The In Silico Analysis and Identification of Possible Inhibitor of H5N1 Virus Compounds Analysis and Identification of Possible Neuraminidase Inhibitors Section Articles
##plugins.themes.academic_pro.article.main##
Abstract
Fingerroot (Boesenbergia pandurata (Roxb.)) belongs to the family Zingiberaceae (Ginger). B. pandurata has pharmacological benefits such as neuroprotective, chemoprotective, anti-inflammatory, anti-angiogenic, antioxidant, an inhibitor of protease enzyme NS2B/NS3 dengue virus, Japanese encephalitis virus and swine flu virus (H1N1). This study aims to determine the most effective compounds from B. pandurata as neuraminidase inhibitors of H5N1 virus. The amino acid sequence for neuraminidase of avian influenza A virus subtype H5N1 of A/China/GD02/2006 was retrieved from protein sequence database at NCBI. Then, modeled by Swiss Model. Analyse of molecular docking was performed using PyRx and the interactions between neuraminidase inhibitors of H5N1 and B. pandurata active compound was analyzed by PyMol software and LigPlot+ software. From the 30 active compounds which have been docked, 4-hydroxypanduratin A, rubranine, boesenbergin B, boesenbergin A, 5,7-dimethoxyflavone, and tectochrysin had an equal or smaller free binding energy than control compound. 4-hydroxypanduratin A proved to be the most potent active compound as a neuraminidase inhibitor (NA 1) because it has the most negative binding energy and the same amino acid binding residue with the control compound. Therefore, 4-hydroxypanduratin A is predicted to be used as inhibitors of neuraminidase in the H5N1 virus.
##plugins.themes.academic_pro.article.details##
References
-
Taubenberger JK, Morens DM (2009) Pandemic influenza–including a risk assessment of H5N1. Revue Scientifique Et Technique 28 (1): 187–202.
Chandrabhan S, Ghulam JK, Richa M, Vaibhav V, Shruti K (2014) In-silico modelling and identification of a possible inhibitor of H1N1 virus. Asian Pacific Journal of Tropical Disease 4 (1): 467-476. doi: 10.1016/S2222-1808(14)60492-8.
Petrosillo N, Bella SD, Drapeau CM, Grilli E (2009) The novel influenza A (H1NA 1) virus pandemic: An update. Annals of Thoracic Medicine 4 (4): 163–172. doi: 10.4103/1817-1737.56008.
Rupert JR, Lesley FH. David JS, Patrick JC, Yi PL, Michael B, Alan JH, Steven JG, John JS (2006) The structure of H5N1 avian influenza neuraminidase suggests new opportunities for drug design. Nature 443: 45–49.
Peiris JS, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1): a threat to human health. Clinical Microbi-ology Reviews 20 (2): 243-267. doi: 10.1128/CMR.00037-06.
Zhou H, Yu Z, Hu Y, Tu J, Zou W, Peng, Zhu Y, Li Y, Zhang A, Yu Z, Ye Z, Chen H, Jin M. (2009) The special neuraminidase stalk-motif responsible for increased viru-lence and pathogenesis of H5N1 influenza a virus. PLoS ONE 4(7): e6277. Doi: 10.1371/journal.pone.0006277.
Gamblin SJ, Skehel JJ (2010) Influenza hemagglutinin and neuraminidase membrane glycoproteins. Journal of Biological Chemistry 285(37): 28403-28409. doi: 10.1074/jbc.R110.129809.
Ikram NKK, Durrant JD, Muchtaridi M, Zalaludin AS, Purwitasari N, Mohamed N, Rahim ASA, Lam CK, Normi YM, Rahman NA, Amaro RE, Wahab HA (2015) A virtual screening approach for identifying plants with anti H5N1 neuraminidase activity. Journal of Chemical Information and Modeling 55 (2): 308?316. Doi: 10.1021/ci500405g.
Fukuyama S, Kawaoka Y (2011) The pathogenesis of influ-enza virus infections: the contributions of virus and host factors. Current Opinion in Immunology 23 (4): 481–486. doi: 10.1016/j.coi.2011.07.016.
Meng XY, Zhang HX, Mezei M, Cui M (2011) Molecular docking: a powerful approach for structure-based drug dis-covery. Current Computer Aided Drug 7 (2): 146-157.
Nitsch-Osuch A, Brydak LB (2014) Influenza viruses re-sistant to neuraminidase inhibitors. Acta Biochimica Po-lonica 61 (3): 505-508.
Yen HL, Ilyushina NA, Salomon R, Hoffmann E, Webster RG, Govorkova EA (2007) Neuraminidase inhibitor-resistant recombinanta/Vietnam/1203/04 (H5N1) influenza viruses retain their replication efficiency and pathogenicity in vitro and in vivo. Journal of Virology 81 (22): 12418–12426. doi: 10.1128/JVI.01067-07.
Chahyadi A, Hartati R, Wirasutisna KR, Elfahmi (2014) Boesenbergia pandurata Roxb., an Indonesian medicinal plant: phytochemistry, biological activity, plant biotechnol-ogy. Procedia Chemistry 13 (2014): 13 –37. doi: 10.1016/j.proche.2014.12.003.
Fahey JW, Stephenson KK (2002) Pinostrobin from honey and Thai ginger (Boesenbergia pandurata): a potent flavo-noid inducer of mammalian phase 2 chemoprotective and antioxidant enzymes. Journal of Agricultural and Food Chemistry 50 (25): 7472-7476.
Yun JM, Kwon H & Hwang JK (2003) In vitro anti-inflammatory activity of panduratin A isolated from Kaempferia pandurata in RAW264.7 cells. Planta Medica 69 (12): 1102-1108. doi: 10.1055/s-2003-45190.
Lai SL, Cheah SC, Wong PF, Noor SM, Mustafa MR (2012) In vitro and in vivo anti-angiogenic activities of Panduratin A. PLoS One 7 (5): e38103. doi: 10.1371/journal.pone.0038103.
Shindo K, Kato M, Kinoshita A, Kobayashi A, Koike Y (2006) Analysis of antioxiandt activities contained in the Boesenbergia pandurata Schult. Rhizome. Journal of Bioscience, Biotechnology, and Biochemical 70 (9): 2281-2284. doi: 10.1271/bbb/60086.
Kiat TS, Pippen R, Yusof R, Ibrahim H, Khalid N, Rahman NA (2006) Inhibitory activity of cyclohexenyl chalcone derivatives and flavonoids of fingerroot, Boesenbergia rotunda (L.), towards dengue-2 virus NS3 protease. Bioorganic and Medicinal Chemistry Letters 16 (12): 3337-3340. Doi: 10.1016/j/bmcl.2005.12.075.
Seniya C, Mishra H, Yadav A, Sagar N, Chaturvedi B, Uchadia K, Wadhwa G (2013) Antiviral potential of 4-hydroxypanduratin A, secondary metabolite of Fingerroot, Boesenbergia pandurata (Schult.), towards Japanese en-cephalitis virus NS2B/NS3 protease. Bioinformation 9 (1): 54-60. doi: 10.6026/97320630009054.
Peiris JS, de Jong MD, Guan Y (2007) Avian influenza virus (H5N1) : a threat to human health. Journal of Clini-cal Microbiology 20 (2): 243-267. Doi: 10.1128/CMR.00037-06.
Wheeler DL, Church DM, Edgar R, Federhen S, Helmberg W, Madden TL, Pontius JU, Schuler GD, Schriml, LM, Se-queira E, Suzek TO, Tatusova TA, Wagner L (2004) Data-base resources of the National Center for Biotechnology Information: update. Nucleic Acids Research 32 (Database issue): D35-D40. doi: 10.1093/nar/gkh073.
Biasini M, Bienert S, Waterhouse A, Arnold K, Studer G, Schmidt T, Kiefer F, Cassarino TG, Bertoni M, Bordoli L, Schwede T (2014) SWISS-MODEL: modelling protein ter-tiary and quaternary structure using evolutionary infor-mation. Nucleic Acids Research 42 (Web Server issue): W251-W258. doi: 10.1093/nar/gku340.
Kim S, Thiessen PA, Bolton EE, Chen J, Fu G, Gindulyte A, Han L, He J, He S, Shoemaker BA, Wang, J, Yu B, Zhang J, Bryant SH (2016) PubChem substance and com-pound databases. Nucleic Acids Research 44 (Database is-sue): D1202-D1213. doi: 10.1093/nar/gkv951.
Stepanchikova AV, Lagunin AA, Filimonov DA, Poroikov VV (2003) Prediction of biological activity spectra for sub-stances: evaluation on the diverse sets of drug-like struc-tures. Current Medicinal Chemistry 10 (3): 225-233.
Kalidasu S, Kuna Y (2012) Validation of selected Anti- Alzheimer’s drugs through Lipinski rule of five. Journal of Pharmacy Research 5 (4): 2174-2177.
Zhang C, Freddolino PL, Zhang Y (2017) COFACTOR: improved protein function prediction by combining struc-ture, sequence and protein–protein interaction information. Nucleic Acids Research 45 (W1): W291–W299. doi: 10.1093/nar/gkx366.
Dallakyan S, Olson AJ (2015) Small-molecule library screening by docking with PyRx. Methods in Molecular Bi-ology 1263: 243-50. doi:10.1007/978-1-4939-2269-7_19.
Seeliger D, de Groot BL (2010) Ligand docking and bind-ing site analysis with PyMOL and Autodock/Vina. Journal of Computer-Aided Molecular Design 24 (5): 417–422. doi: 10.1007/s10822-010-9352-6.
Laskowski RA, Swindells MB (2011) LigPlot+: multiple ligand protein interaction diagrams for drug discovery. Journal of Chemical Information and Modeling 51 (10): 2778–2786. doi: 10.1021/ci200227u.
Batool S, Mushtag G, Kamal W, Kamal MA (2013) Phar-macophore-based virtual screening for identification of novel neuraminidase inhibitors and verification of inhibitory activity by molecular docking. Medicinal Chemistry 12: 63-73.
Damayanti DS, Utomo DH, Kusuma C (2017) Revealing the potency of Annona muricata leaves extract as FOXO1 inhibitor for diabetes mellitus treatment through computa-tional study. In Silico Pharmacology 5 (1): 2-7. doi: 10.1007/s40203-017-0023.
Zukhurullah M, Aswad M, Subehan (2012) Kajian bebera-pa senyawa antiinflamasi: docking terhadap siklooksigen-ase-2 secara in silico. Majalah Farmasi dan Famakologi 16 (1): 37–44.