Kholis Audah


Protein-protein interactions are ubiquitous biological phenomena in all types of organism and play vital roles in various metabolic processes. Therefore, it is very important to understand how protein-protein interactions take place and govern different mechanisms at cellular and molecular levels. Thus, determination of protein-protein interactions is the key in elucidating such mechanisms. In order to provide adequate knowledge and guidance in selecting appropriate methods to determine protein-protein interactions, this article will review basic principles, definitions, terminologies, parameters and classification of protein-protein interactions, obtained either from in silico or laboratory experimental works. Some examples of commonly used biochemical and biophysical methods for characterization of protein-protein interactions were also discussed.


How to Cite
Audah, K. (2021) “FUNDAMENTALS OF PROTEIN-PROTEIN INTERACTIONS AND THEIR METHODS OF CHARACTERIZATION”, Bioinformatics and Biomedical Research Journal, 4(2), pp. 70–82. doi: 10.11594/bbrj.04.02.04.


  1. Westermarck J, Ivaska J, Corthals GL 2013.Indentification of protein interactions involved in cellular signaling. Molecular & Cellular Proteomics. 12(7):1752-1763. doi:10.1074/mcp.r113.027771
  2. Vranken VD, Weiss GA 2012. Introduction to Bioorganic Chemistry and Chemical Biology. New York: Garland Science. doi:10.1201/9780203381090
  3. Kastritus PL, Bonvin AMJJ. 2013. On the binding affinity of macromolecular interaction: daring to ask why proteins interact. Journal of The Royal Society Interface. 10(79):835. doi: 10.1098/rsif.2012.0835
  4. Wetie N, Armand G, Izabela S, Alisa WG, Urmi R, Joseph AL, Costel DC. 2013. Investigation of stable and transient protein-protein interactions: past, present, and future. Proteomics. 13(3-4):538-557. doi:10.1002/pmic.201200328
  5. Tolani P, Gupta S, Yadav K, Aggarwal S, Yadav AK. 2021. Big data, Integrative omics and network biology. Advance in Protein Chemistry and Structural Biology. 127:127-160. doi:10.1016/bs.apcsb.2021.03.006
  6. Massoud TF, Paulmurugan R. 2021. Chapter 47- Molecular imaging of Protein-protein interaction and protein folding. Molecular Imaging (Second Edition): Academic Press. 897-928. doi: 10.1016/B978-0-12-8163863.00071-5
  7. Perkins JR, Diboun I, Dessailly BH, Lees JG, Orengo C. 2010. Transient protein-protein interactions: structural, functional, and network properties. Structure. 18(10):1233-1243. doi:10.1016/j.str.2010.08.007
  8. Ursula J, Richard K, Vladimir UN. 2014. Conditionally and transiently disordered proteins: awakening cryptic disorder to regulate protein function. Chemical Reviews. 114(13):6779-6805. doi:10.1021/cr400459c
  9. Keskin O, Ma B, Nussinov R. 2005. Hot region in protein-protein interaction: the organization and contribution of sctructurally conserved hot spot residues. Journal of Molecular Biology. 345(5):1281-1294. doi:10.1016/j.jmb.2004.10.077
  10. Keskin O, Tsai CJ, Wolfson H, Nussinov R. 2004. A new, structurally nonredundant, diverse data set of protein–protein interfaces and its implications. Protein Science. 13(4):1043-1055. doi:10.1110/ps.03484604
  11. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1996. A dataset of protein-protein interface generated with a sequence-order independent comparison technique. Journal of Molecular Biology. 260(4):604-620. doi:10.1006/jmbi.1996.0424
  12. Joël J. 1997. Specific versus non-specific contacts in protein crystals. Nature Structural & Molecular Biology. 4(12):973-974. doi:10.1038/nsb1297-
  13. Janin J. 1995. Principles of protein-protein recognition from structure to thermodynamics. Biochimie. 77(7-8):497-505). doi:10.1016/0300-9084(96)88166-1
  14. Horton N, Lewis M. 1992. Calculation of the free energy of association for protein complexes. Protein Science. 1(1):169-181. doi:10.1002/pro.5560010117
  15. Cyrus C, Joël J. 1975. Principles of protein–protein recognition. Nature Structural & Molecular Biology. 256(5520):705-708. doi:10.1038/256705a0
  16. Privalov PL. 1979. Stability Small Globular Proteins. Advance Protein Chemistry. 33:167-241. doi:10.1016/S0065-3233(08)60460-X
  17. Zerbe BS, Hall DR, Vadja S, Whitty A, Kozakov D. 2012. Relationship between hot spot residues and ligand binding hot spot in protein-protein interface. Journal of Chemical Information and Modeling. 52(8):2236-2244. doi:10.1021/ci300175u
  18. Golden MS, Cote SM, Sayeg M, Zerbe BS, Villar EA, Beglov D, Sazinsky SL, Georgiadis RM, Vaida S, Kozakov D, Whitty A. 2013. Comprehensive experimental and computational analysis of binding energy hot spot at the NF-kB essesntial modulator/IKK? protein-protein surface. Journal of the American Chemical Society. 135(16):6242-6256. doi:10.1021./ja400914z
  19. Cukuroglu E, Engin HB, Gursoy A, Keskin O. 2014. Hot spot in protein-protein interface: toward drug discovery. Progress in Biophysics and Molecular Biology. 116(2-3):165-173. doi:10.1016/j.pbiomolbio.2014.06.003
  20. David A, Sternberg MJE. 2015. The contribution of missense mutations in core and rim residues of protein-protein interface to human disease. Journal of Molecular Biology. 427(17):2886-2898. doi:10.1016/j.jmb.2015.07.004
  21. Bogan AA, Thom KS. 1998. Anatomy of hot spots in protein interfaces. Journal of Molecular Biology. 280(1):1-9. doi:10.1006/jmbi. 1998.1843
  22. Tsai CJ, Lin SL, Wolfson HJ, Nussinov R. 1997. Studies of protein-protein interfaces: A statistical analysis of the hydrophobic effect. Protein Science. 6(1):53-64. doi:10.1002/pro.5560060106
  23. Scott DE, Bayly AR, Abell C, Skidmore J. 2016. Small molecular, big targets, drug discovery faces thes protein-protein interaction challenge. Nature Reviews Drug Discovery. 15:533-550. doi:10.1038/nrd.2016.29
  24. Luo J, Guo Y, Zhong Y, Ma D, Li W, Li M. 2014. A functional feature analysis on diverse protein-protein interactions: application for the prediction of binding affinity. Journal of Computer-Aided Molecular Design. 28(6):619-629. doi:10.1007/s10822-014-9746-y
  25. Thiruphati R, Sravanthi S, Kumar A, Prabakharan EN. 2011. Protein-protein complexes. Journal of the Indian Institue of Science. 91:497-520.
  26. Chakravarty D, Janin J, Robert CH, Chakrabarti P. 2015. Changes in the protein structure at the interface accompanying complex formation. IUCrJ. 2(6):1-10. doi:10.1107/S2052252515015250
  27. Yan C, Wu F, Jernigan RL, Dobbs D, Honavar V. 2008. Characterization of Protein–Protein Interfaces. Protein J. 27(1):59-70. doi:10.1007/s10930-007-9108-x
  28. Cyrus C. 1974. Hydrophobic bonding and accessible surface area in proteins. Nature (London). 248(5446):338-339. doi:10.1038/248338a0
  29. Ilya Dr, Vasker A, Alflalo C. 1994. Hydrophobic docking: A proposed enhancement to molecular recognition techniques. Genetics. 20(4):320-329. doi:10.1002/prot.340200405
  30. Lawrence MC, Colman PM. 1993. Shape Complementarity at protein/protein interface. Journal of Molecular Biology. 234(4):946-950. doi:10.1006/jmbi.1993.1648
  31. Jones S, Thornton JM. 1996. Principle of protein-protein interactions. Proceedings of the National Academy of Sciences. 93(1):13-20. doi:10.1073/pnas.93.1.13
  32. Phizicky EM, Fields S. 1995. Protein-protein interactions: Methods for Detection and Anaysis. Microbiological Review. 59(1):94-123). doi:10.1128/mr.59.1.94-123.1995
  33. Lee FS, Auld DS, Bert VL. 1989. Tryptophan fluorescence as a probe of placental ribonuclease inhibitor binding to angiogenin. Biochemistry. 28(1):219-224. doi:10.1021/bi00427a030
  34. Lee FS, Robert S, Bert VL. 1989. Tight-binding inhibition of angiogenin and ribonuclease A by placental ribonuclease inhibitor. Biochemistry. 28(1):225-230. doi:10.1021/bi00427a031
  35. Robert S, Bert VL. 1991. Interaction of human placental ribonuclease with placental ribonuclease inhibitor. Biochemistry. 30(8):2246-2255. doi:10.1021/bi00222a030
  36. Speer SL, Zheng W, Jiang X, Chu I, Guseman AJ, Liu M, Pielak GJ, Li C. 2021. The intracellular environment affect protein-protein interactions. Proceedings of the National Academy of Sciences. 18(11):1-7. doi:10.1073/pnas.2019918118
  37. Gao B, Ellis HR. 2005. Altered mechanism of the alkanesulfonate FMN reductase with the monooxygenase enzyme. Biochemical and Biophysical Research Communications. 331(4):1137-1145.
  38. Abdurachim KA. 2007. Studies to Elucidate the Mechanism of Reduced Flavin Transfer in the Alkanesulfonate Monooxygenase System From Escherichia coli. [Thesis]. Alabama [US]: Department of Chemistry and Biochemistry. Auburn University
  39. Zhang YHP. 2011. Substrate channeling and enzyme complexes for biotechnological applications. Biotechnology Advance. 29(6):715-725. doi:10.1016/j.biotechadv.2011.05.020
  40. Raushel FM, Thonden JB, Holden HM. 2003. Enzymes with molecular tunnels. Accounts of Chemical Research. 36(7):539-548. doi:10.1021/ar020047k
  41. Abdurachim K, Ellis HR. 2006. Detection of protein-protein interactions in the alkanesulfonate monooxygenase system from Escherichia colli. Journal of Bacteriology. 188(23):8153-8159. doi:10.1128/JB.00966-06
  42. Jeffers CE, Nichols JC, Tu SC. 2003. Complex formation between vibrio harveyi luciferase and monomeric NADPH:FMN oxidoreductase. Biochemistry. 42(2):529-534. doi:10.1021/bi026877n
  43. Wilson IA, Stanfield RL. 1994. Antibody-antigen interactions: new structures and new conformational changes. Current Opinion in Structural Biology. 4(6):857-867. doi:10.1016/0959-440x(94)90267-4
  44. Weber J, Lee RS, Wilke-Mounts S, Grell E, Senior A. 1993. Combined application of site-directed mutagenesis, 2-azido-ATP labeling, and lin-benzo-ATP binding to study the noncatalytic sites of Escherichia coli F1-ATPase. Journal of Biologycal Chemistry. 268(9):6241-5247. doi:10.1016/S0021-9258(18)53245-2
  45. Steitz TA, Anderson WF, Fletterick RJ, Anderson CM. 1977. High resolution crystal structure of yeast hexokinase complexes with substrates, activators, and inhibitors. Evindence for an allosteric control site. Journal of Biologycal Chemistry. 252(13):4494-4500. doi:10.1016/S0021-9258(17)40188-8
  46. Evans PR, Farrants GW, Hudson PJ, Britton HG. 1981. Phosphofructokinase: structure and control [and discussion]. Philosophical Transactions of the Royal Society B: Biological Sciences. 293(1063):53-62. doi:10.1098/rstb.1981.0059
  47. Sauer RT, Krovantin W, DeAnda J, Youderian P, Susskind MM. 1983. Primary structure of the immI immunity region of bacteriophage P22. Journal of Molecular Biology. 168(4):699-713. doi:10.1016/s0022-2836(83)80070-9
  48. Vincent, Pierre J, Michel L. 1972. Trypsin-pancreatic trypsin inhibitor association. Dynamics of the interaction and role of disulfide bridges. Biochemistry. 11(16):2967-2977. doi:10.1021/bi00766a007
  49. Rao VS, Srinivas K, Sujini GN, Kumar GNS. 2014. Protein-protein interaction detection: methods and analysis. International Journal of Proteomics. 12:2-10. doi:10.1155/2014/147648
  50. Poluri KM, Gulati K, Sarkar S. 2021. Experimental Methods for Determination of Protein–Protein Interactions. In: Protein-Protein Interactions. Springer, Singapore. 197-264. doi:10.1007/978-981-16-1594-8_5
  51. Berggard T, Linse S, James P. 2007. Methods for the detection and analysis of protein–protein interactions. Proteomics. 7(16):2833-2842. doi:10.1002/pmic.200700131
  52. Formosa, Tim. 1991. Using protein affinity chromatography to probe structure of protein machines. Methods in Enzymol. 208:24-45. doi:10.1016/0076-6879(91)08005-3
  53. Friedrich P. 1984. Supramolecular Enzym Organization: Quatemary Structure and Beyond. Pergamon Press, Oxford
  54. Srere, Paul A. 1987. Complexes of sequential metabolic enzymes. Annual Review of Biochemistry. 56(1):89-124. doi:10.1146/
  55. Goodsell DS, Olson AJ. 1993. Soluble proteins: Size, shape and function. Trends in Biochemical Sciences. 18(3):65-68. doi:10.1016/0968-0004(93)90153-E
  56. Klotz IM, Darnall DW, Langerman NR. 1975. In: The proteins (Neurath, H. & Hill, R. L., eds). Academic Press. Inc, New York
  57. Berggard T, Linse S, James P. 2007. Methods for the detection and analysis of protein-protein interactions. Proteomics. 7:2833-2842. doi:10.1002/pmic.200700131
  58. Muronetz VL, Sholukh M, Korpela T. 2001. Use of protein–protein interactions in affinity chromatography. Journal of Biochemical and Biophysical Methods. 49(1-3):0-47. doi:10.1016/s0165-022x(01)00187-7
  59. Ratner D. 1974. The interaction of bacterial and phage proteins with immobilized Escherichia coli RNA polymerase. Journal of Molecular Biology. 88(2):373-383. doi:10.1016/0022-2836(74)90488-4
  60. Miller, Kathryn G. 1991. Use of actin filament and microtubule affinity chromatography to identify proteins that bind to the cytoskeleton. Methods in Enzymol.196:303-319. doi:10.1016/0076-6879(91)96028-p
  61. Cohen BD, Lowy DR, Schiller JT. 1993. The conserved C-terminal domain of the bovine papillomavirus E5 oncoprotein can associate with an alpha-adaptin-like molecule: a possible link between growth factor receptors and viral transformation. Molecular and Celullar Biology. 13:6462-6468. doi:10.1128/mcb.13.10.6462-6468.1993
  62. Truan R, Xiao H, Ingles CJ, Blatt G. 1993. Direct interaction between the transcriptional activation domain of human p53 and the TATA box-binding protein. Journal of Biologycal Chemistry. 268:2284-2287. doi:10.1016/S0021-9258(18)53769-8
  63. Fan C, Basri G, Simon W, Stephan FR, Alfredo iJ, Renato Z. 2016. Applying mass spectrometry to study non-covalent biomolecule complexes. Mass Spectrometry Reviews. 35(1):48–70. doi:10.1002/mas.21462
  64. Baird BA, Hammes GG. 1976. Chemical cross-linking studies of chloroplast coupling factor 1. Journal of Biologycal Chemistry. 251(22): 6953-6962. doi:10.1016/S0021-9258(17)32927-7
  65. Leitner , Joachimiak LA, Unverdorben P, Walzthoeni T, Frydman J, Forster F, Aebersold R. 2014. Chemical cross-linking/mass spectrometry targeting acidic residues in proteins and protein complexes. Proceedings of the National Academy of Sciences. 111(26):9455–9460. doi:10.1073/pnas.1320298111
  66. Mayers G. 2020. XLMOD: Cross-linking and chromatography derivatization reagents ontology. Biomolecules. 1-10. doi:10.48550/arXiv.2003.00329
  67. Rockford IL. 2006. Cross-linking reagents Technical Handbook. Pierce Biotechnology Inc.
  68. Gunzburg Dj, Riehl R, Weinbarg RA. 1989. Identification of a protein associated with p21ras by chemical crosslinking. Proceedings of the National Academy of Sciences. 86(11):4007-4011. doi:10.1073/pnas.86.11.4007
  69. Baird BA, Hammes GG. 1976. Chemical cross-linking studies of chloroplast coupling factor 1. Journal of Biologycal Chemistry. 251(22): 6953-6962. doi:10.1016/S0021-9258(17)32927-7
  70. Bragg PD, Hou C. 1980. A cross-linking study of the Ca2+ activated adenosine trihosphatase of Escherichia coli. European Journal of Biochemistry. 106(2):495-503. doi:10.1111/j.1432-1033.1980.tb04596.x
  71. Sarkar FH, Gupta SL. 1984. Receptors for human gamma interferon: binding and crosslinking of 125I-labeled recombinant human gamma interferon to receptors on WISH cells. Proceedings of the National Academy of Sciences. 81(16):5160-5164. doi:10.1073/pnas.81.16.5160
  72. Scherer PE. Manning-Krieg UC, Jeno P, Schatz G, Horst M. 1992. Identification of a 45-kDa protein at the protein import site of the yeast mitochondrial inner membrane. Proceedings of the National Academy of Sciences. 89(24):11930-11934. doi:10.1073/pnas.89.24.11930
  73. Sanders SL, Whitfield KM, Vogel JP, Rose MD, Schekman RW. 1992. Sec61p and BiP directly facilitate polypeptide translocation into the ER. Cell. 69(2):353-365. doi:10.1016/0092-8674(92)90415-9
  74. Matthias M, Hendrickson RC, Akhilesh P. 2001. Analysis of Protein and Proteomes by mass spectrometry. Annual Review of Biochemistry. 70(1):437-473. doi:10.1146/annurev.biochem.70.1.437
  75. Traut RR, Casiano C, Zecherle N. 1989. Crosslinking of Protein Subunit and Ligands by Introductions of disulfide bonds. In: Creighton (ed)
  76. Cover JA, Lambert JM, Norman CM, Traut RR. 1981. Identification of proteins at the subunit interface of the Escherichia coli ribosome by cross-linking with dimethyl 3,3'-dithiobis(propionimidate). Biochemistry. 20(10):2843-2852.
  77. Green NS, Reisier E, Houk KN. 2001. Quantitative evaluation of the lengths of homobifunctional protein cross-linking reagents used as molecular rulers. Protein Science. 10(7):1293-1304. doi:10.1110/ps.51201
  78. O’Brien R, Ladbury JE, Chowdry BZ. 2000. Isothermal titration calorimetry of biomolecules. Chapter 10 in Protein-Ligand interactions: hydrodynamics and calorimetry Ed. Harding SE and Chowdry BZ. Oxford University Press.
  79. Jelesarov L, Bosshard HR. 1996. Thermodynamic characterization of the coupled folding and association of heterodimeric coiled coils (Leucine zippers). Journal of Molecular Biology. 263(2):344-358. doi:10.1006/jmbi.1996.0579
  80. Pearce KH, Ultsch MH, Kelley RF, De Vos AM, Wells JA. 1996. Structural and mutational analysis of affinity-inert contact residues at the growth hormone?receptor interface. Biochemistry. 35(32):10300-10307. doi:10.1021/bi960513b
  81. Wintrode PL, Privalov PL. 1997. Energetics of target peptide recognition by calmodulin: A calorimetric study. Journal of Molecular Biology. 266(5):1050-1062. doi:10.1006/jmbi.1996.0785
  82. Arroyo MIJ, Campos TJ, Hernández AA, McClements DJ. 2016. Characterization of flavonoid-protein interactions using fluorescence spectroscopy: Binding of pelargonidin to dairy proteins. Food Chemistry. 213:431–439. doi:10.1016/j.foodchem.2016.06.105
  83. Reza AM, Ulrike H, Goody RS, Alferd W. 1997. Individual rate constants for the interaction of ras proteins with GTPase-activating proteins determined by fluorescence spectroscopy. Biochemistry. 36(15):4535-4541. doi:10.1021/bi962556y
  84. Bai Y, Perez GM, Beechem JM, Weil PA. 1997. Structure-function analysis of TAF130: identification and characterization of a high-affinity TATA-binding protein interaction domain in the N terminus of yeast TAF(II)130. Molecular and Cellular Biology. 17(6):3081-3093. doi:10.1128/mcb.17.6.3081
  85. Annie OB, Bruno A, Minh VT, Pierre C, Marc C. 1993. Interaction between the retinal cyclic GMP phosphodiesterase inhibitor and transducin. Kinetics and affinity studies. Biochemistry. 32(33):8636-8645. doi:10.1021/bi00084a035
  86. Weiel J, Bershey JW. 1982. The binding of fluorescein-labeled protein synthesis initiation factor 2 to Escherichia coli 30 S ribosomal subunits determined by fluorescence polarization. Journal of Biological Chemistry. 257(3):1215-1220. doi:10.1016/s0021-9258(19)68177-9
  87. Raffaele DF, Annalisa P, Giuseppe V, Riccardo C. 1991. Circular dichroism study on the conformational stability of the dimerization domain of transcription factor LFB1. Biochemistry. 30(1):143-147. doi:10.1021/bi00215a021
  88. Ling Y. 1997. Molecular characterization of the B-box protein-protein interaction motif of the ETS-domain transcription factor Elk-1. The EMBO Journal. 16(9):2431-2440. doi:10.1093/emboj/16.9.2431
  89. Gillette MA, Carr SA. 2012. Quantitative analysis of peptides and proteins in biomedicine by targeted mass spectrometry. Nature Methods. 10(1):28–34. doi:10.1038/NMETH.2309
  90. Antony C, Guy P, Gilbert G. 2012. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. 36(2):380–407. doi:10.1111/j.1574-6976.2011.00298.x
  91. Van B, Gary J, Kertesz V. 2007. Using the Electrochemistry of the Electrospray Ion Source. Analytical Chemistry. 79(15): 5510-5520.
  92. Keevil, Brian G. 2013. Novel liquid chromatography tandem mass spectrometry (LC-MS/MS) methods for measuring steroids. Best Practice & Research Clinical Endocrinology & Metabolism. 27(5): 663–674. doi:10.1016/j.beem.2013.05.015
  93. Mullari M, Lyon D, Jensen LJ, Nielsen ML. 2017. Specifying RNA-binding regions in proteins by peptide Cross-Linking and Affinity Purification. Journal of Proteome Research. 7b00042. doi:10.1021/acs.jproteome.7b00042
  94. Prestegard JH, Kishore AI. 2001. Partial alignment of biomolecules: an aid to NMR characterization. Current Opinion in Chemical Biology. 5(5):584-590. doi:10.1016/s1367-5931(00)00247-7
  95. Blackledge M. 2005. Recent progress in the study of biomolecular structure and dynamics in solution from residual dipolar couplings. Progress in Nuclear Magnetic Resonance Spectroscopy. 46:23-61. doi:10.1016/j.pnmrs.2004.11.002
  96. Zhuogin Y, Pengfei L, Kenneth M. 2017. Using ligand-induced protein chemical shift perturbations to determine protein–ligand structures. Biochemistry. 56(18):2349-2362. doi:10.1021/acs.biochem.7b00170
  97. McCoy MA, Wyss DF. 2002. Spatial localization of ligand binding sites from electron current density surfaces calculated from NMR chemical shift perturbations. Journal of the American Chemical Society. 124(39):11758-11763. doi:10.1021/ja026166c
  98. Welch BD, Blake BK, David DR, Meyer HH, Emr SD, Sundquist WI, Alam SL, Sun J, Payne M. 2004. Ubiquitin interactions of NZF zinc fingers. The EMBO Journal. 23(7):1411-1421. doi:10.1038/sj.emboj.7600114
  99. Abarna T, Daniel N, Helen MR, Mitsuru O, Debbie L, Peter NR, Miriam H, Alain V, Natalia MV, Ernest DL. 2004. Structural basis of HP1/PXVXL motif peptide interactions and HP1 localisation to heterochromatin. The EMBO Journal. 23(3):489-499. doi:10.1038/sj.emboj.7600088
  100. Wei F, Jia-Fu L, Jing-Song J, Tetsuya S, Mingjie Z. 2004. The tetrameric L27 domain complex as an organization platform for supramolecular assemblies. Nature Structural & Molecular Biology. 11(5):475-480. doi:10.1038/nsmb751
  101. Yoshimoto FK. 2020. The Proteins of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS CoV-2 or n-COVI9), the Cause of COVID-19. The Protein Journal. 39:198-216. doi:10.1007/s10930-020-09901-4